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ion, m/e 194 (10, M - CH2CO - 2H2), 180 (10, M - HOAc), 
137 (5), 136 (6), 134 (7), 120 (68, M - 2HOAc), 108 (9), 107 
(19), 105 (19), 94 (100, M - HOAc - CH2CHOAc), 92 (27), 
79 (16), 67 (3). The corresponding trans isomer 7 was readily 
synthesized from cyclooctadiene monoepoxide (8)9 as outlined 
in Scheme I. Photoisomerization of 7 using naphthalene as the 
sensitizer gave a 1:1.3 mixture of 6 and 7 at the photostationary 
state which was reacted with maleic anhydride in benzene in 
a sealed tube (2 h, 90 0 C, trace of hydroquinone). Separation 
of 6 and the Diels-Alder adduct of 7 was achieved by chro­
matography. The synthetic 6 was identical with 6 from the 
degraded toxin. 
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Isolation and Characterization of the First Mitotic 
Cycle Hormone That Regulates Cell Proliferation 

Sir: 

Since the discovery of a natural substance that regulates 
cellular proliferation by Bullough and coinvestigators in the 
early 1960s, numerous investigators have attempted to clarify 
the chemical structures and physiological activities of various 
chalones.1 The importance of these substances as tools in 
cancer research has become evident. 

More recently, we (Evans and Van't Hof)2 have charac­
terized some physiological parameters of a G2 factor present 
in cotyledons of peas (Pisum sativum) that promotes cell arrest 
in G23 in both roots and shoots after seed germination. Many 
of the physiological responses of the G2 factor resemble those 
of chalones. The purpose of this communication is to describe 
the isolation and characterization of this G2 factor. 

Seeds of garden peas (Pisum sativum) were surface steril­
ized and germinated on sterile vermiculite. The cotyledons 
(~3200) of the 3-day-old seedlings were aseptically excised 
and incubated in 8 L of sterile distilled water in 160 culture 
flasks for 2 days. The water extract was then filtered through 
a graded series of filters until it passed through a 0.30-mesh 
millipore filter. The extract was evaporated, chromatographed 
on Dowex 50W-X4,4 dried, dissolved in 20% ethanol, and 
chromatographed on Sephadex LH-20.4 The bioactive frac­
tions which were assayed according to published methods2 were 
pooled to give 10 g of residue. Two gel filtrations through Se-
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Figure 1. The FT IR of G2 factor, on KRS-5 plate. 

Figure 2. The proton noise decoupled '3C NMR spectrum with 255 Mg of 
G2 factor in 25 ,uL of D2O, using a 1.7-mm microsample insert. The carbon 
resonances are assigned and are given with the integrated area of each 
signal. All protonated carbon resonances integrate to approximately one 
except for the 146.7-ppm (C-2, -6) signal which integrates to two carbons. 
The insert shows the structure assigned to the G2 factor together with the 
proton chemical shifts. 

phadex G-IO, 3 X 36 cm, H2O, gave 45 mg of the crude G2 
factor characterized by a UV band at 265 nm, Preparative 
TLC, CHCl3-MeOH-H2O (65:65:10), followed by cellulose 
TLC, MeCN-Z-PrOH-H2O (4:3:3), yielded 2 mg of material 
which was further purified by Sephadex G-15 gel filtration to 
finally give 50 ̂ g of pure G2 factor. The entire procedure was 
repeated four more times to afford a total of ~250 pg of the 
bioactive compound which was very polar and insoluble in most 
organic solvents except Me2SO and MeOH. 

Numerous attempts to measure the mass spectrum (CI-MS, 
FD-MS, and EI-MS) were unsuccessful. However, satisfactory 
results were obtained with a sample from one particular 50-jug 
batch of G2 factor5 by high resolution EI-MS,6 (190 0C, 70 
eV) m/e 138.0553 (M + H, calcd for 138.0553), 123.0320 (M 
+ H - CH3, calcd 123.0320), 94.0657 (M + H - CO2, calcd 
94.0657), 79.0422 (C5H5N, calcd 79.0422). 

The UV in H2O remained constant above pH 4, Xmax 265 
with a shoulder at 271 nm, but the 271-nm shoulder became 
more pronounced at pH 2. The FT IR7 measured as a film (10 
,Ug) on a KRS-5 plate, 500 transients, is shown in Figure 1; 
preliminary inspections suggested the presence of some "hy-
droxylic" function (bands around 3400 cm-1),8 a heteroaro-
matic nucleus,9 and three adjacent aromatic hydrogens (780 
cm"1). The 80-MHz 1H NMR spectrum10 of 130 Mg, obtained 
in 1000 transients, was relatively simple and consisted of the 
following signals (see Figure 2, inset): 4.35 (3 H, s), 8.20 (1 

H, dd, J = 6.50 and 7.50 Hz), 8.75 (1 H, d, J = 7.50 Hz), 8.87 
(1 H, d, J = 6.50 Hz), and 9.20 ppm (1 H, s).11 A 20-MHz 13C 
NMR spectrum (Figure 2)12 of the combined lots of the 
sample was obtained using a 3-s repetition rate, a 26° flip 
angle, and 239 400 double precision transients (9 days' accu­
mulation).14 The peaks at 168.6 and 137.9 ppm were absent 
from a 3-day accumulation using a 0.819-s repetition rate and 
26° flip angle, identifying those peaks as nonprotonated car­
bons. 

The evidence cited above indicated that the G2 factor was 
N-methylnicotinic acid (1), a conclusion which was confirmed 
by comparison with a synthetic sample, /V-Methylnicotinic 
acid was first isolated in 1895 from Trigonellafoenum-grae-
cum ("trigonelline") and has since been isolated from various 
other sources;15 however, it has not been associated with any 
hormonal activity before. Trigonelline is the first natural 
hormone and natural substance to be chemically characterized 
from plant or animal sources that regulates cell proliferation 
by cell arrest in either Gl or G23 in complex tissues. 
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